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Gliomas are the most common primary brain tumors of all ages
and constitute a genetically and phenotypically heterogeneous
group of primary brain tumors arising from glia or their
precursors in the central nervous system (CNS). Most
gliomas are of astrocytic origin (astrocytomas) although
oligodendrogliomas and mixed glial tumors are also common.
The clinical behavior of astrocytomas is reflected in a four-tier
histological grade system (grades I–IV) according to an
ascending scale of malignancy. Glioblastoma multiforme (GBM)
(grade IV) is the most prevalent and deadliest form of glioma and
brain cancer in adults. Two forms of GBM are recognized,
primary or de novo and secondary, which follows an
evolutionary progression from grade II through grade IV
lesions (von Deimling et al., 1993; Watanabe et al., 1996).
Currently, GBM is not amenable to conventional surgical,
radiotherapeutic, and/or chemotherapeutic interventions and
as such, it carries a dismal prognosis. Despite a plethora of
scientific publications reflecting advances in the molecular
biology and genetics (including integrated genomic analysis)
of brain tumors during that past decade (Parsons et al.,
2008), no significant strides have been made in the treatment
of GBM.

The authors of this review advocate a fresh approach to GBM
pathobiology and development of a new class of diagnostic/
prognostic brain tumor markers with potential therapeutic
implications based on altered tubulin functions, which
underlie malignant (anaplastic) transformation of gliomas and
progression into GBMs. In recent years, we have shown
overexpression and ectopic compartmentaization of g-tubulin
in GBMs (Katsetos et al., 2006, 2007). This review focuses on
the intricate changes in the expression, distribution, and
compartmentalization of g-tubulin in cancer with emphasis on
glial tumors and GBM tumorigenesis.
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Centrosomes

The centrosomes are small non-membranous juxtanuclear
cytoplasmic organelles composed of a pair of barrel-shaped
centrioles surrounded by an amorphous pericentriolar matrix.
Each centriole comprises nine sets of triplet microtubules
while other protein structures are found both within and
outside the centrioles. The pericentriolar material comprises a
large repertoire of proteins including microtubule nucleating
and docking proteins as well as numerous key regulators of



Fig. 1. Comparison of g-tubulin distribution in fibroblast and
glioblastoma cells. Mouse embryonal fibroblasts 3T3 (A,C,E) or
human glioblastoma cells T98G (B,D,F) were fixed in methanol and
double-label stained with mouse monoclonal antibody TU-31
(Nováková et al., 1996) to g-tubulin (A,B) and rabbit polyclonal
antibody to a-tubulin (C,D). Superposition of images are shown in E
and F (g-tubulin in red; a-tubulin in green; nuclei labelled with DNA-
binding dye DAPI in blue). Fluorescence images were captured under
identical conditions (200 msec exposure) and processed in exactly the
same manner. Scale bar, 20mm.

T U B U L I N T A R G E T S I N G B M 515
cell-cycle progression (Stearns et al., 1991; Zheng et al., 1991;
Stearns and Kirschner, 1994; Dictenberg et al., 1998; Young
et al., 2000; Doxsey, 2001; Krämer et al., 2002, 2004;
Nigg, 2002). Normal diploid somatic cells contain a single
centrosome. Centrosomes undergo duplication precisely once
before cell division and this process is linked to the cell division
cycle via cyclin-dependent kinase (cdk) 2 activity that couples
centriole duplication to the onset of DNA replication at the
G(1)/S phase transition (Krämer et al., 2002).

Centrosomes subserve diverse cellular functions. The
centrosome is the site for microtubule nucleation both in the
context of cell division (cytokinesis) and mitosis, ensuring
balanced chromosome segregation (Brinkley and Goepfert,
1998; D’Assoro et al., 2002; Nigg, 2002), as well as in the
growth and organization of cytoplasmic microtubules
contributing to cell polarity and architecture (Brinkley, 1985).
Centrosome-nucleated microtubules are organized into astral
arrays in interphase and mitotic spindles in mitosis. The
nucleation of microtubules occurs from within the
pericentriolar material where the key microtubule nucleating
protein, g-tubulin is located (Joshi et al., 1992; Zheng et al.,
1995). During normal mitosis, two centrosomes ensure the
assembly of bipolar spindles and proper chromosomal
segregation. Extra copies of centrosomes result in the
formation of multipolar spindles resulting in chromosomal
missegregation (Nigg, 2002; Krämer et al., 2004). While the
traditional and best-characterized function of centrosomes is to
mediate the strictly bipolar separation of chromosomes during
mitosis, centrosomes are also involved in divergent regulatory
events of the cell cycle including entry into mitosis, cytokinesis,
G(1)/S transition, and monitoring of DNA damage as attested
by a growing list of centrosome-associated regulatory proteins
(Krämer et al., 2004). To this end, the centrosome is also
involved in the initiation of the S phase and the regulation of
cell-cycle progression (Brinkley, 1985; Khodjakov and Rieder,
1999; Doxsey, 2001; Hinchcliffe et al., 2001) and it is also
involved in DNA damage response by way of integrating
cell-cycle arrest and repair signals in response to genotoxic
stress (Löffler et al., 2006). At the centrosome, g-tubulin forms
a protein complex with pericentrin which exhibits a lattice-like
organization (Dictenberg et al., 1998; Young et al., 2000).

c-Tubulin and Microtubule Nucleation

g-Tubulin has a central role in microtubule nucleation. It was
first discovered in filamentous fungus Aspergillus nidulans as a
product of the mipA gene during genetic screening for proteins
that interact with b-tubulin (Oakley et al., 1990). Experimental
depletion of g-tubulin led to a depletion of microtubules and
to growth arrest. Immunolocalization of g-tubulin revealed an
enrichment of this protein in microtubule-organizing centers
(MTOCs). A typical localization of g-tubulin in mouse
embryonal 3T3 cells is shown in Figure 1A. Up to now,g-tubulin
cDNAs and genes have been cloned and sequenced from a huge
variety of organisms, suggesting that that g-tubulin is present in
all eukaryotes. In mammalian cells, two g-tubulin genes TUBG1
and TUBG2 exist, encoding two closely related isotypes
(Wise et al., 2000). TUBG1 is ubiquitously expressed in all cell
types, whereas TUBG2 has been found mainly in the brain
(Yuba-Kubo et al., 2005).

Multiple charge variants were detected by two-dimensional
electrophoresis in brain (Détraves et al., 1997; Sulimenko et al.,
2002), chicken erythrocytes (Linhartová et al., 2002) as well as
mammalian cell lines (Moudjou et al., 1996; Kukharskyy et al.,
2004). These findings indicate that g-tubulin, like the a- and
b-tubulin counterparts, could be subject to posttranslational
modifications. Phosphorylation of the mouse (Kukharskyy
et al., 2004) and budding yeast g-tubulin has been reported
(Vogel et al., 2001). In Saccharomyces cerevisiae, g-tubulin
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is phosphorylated in G1 phase of the cell cycle, and
dephosphorylated in mitosis. A highly conserved tyrosine
residue 455 near the carboxy terminus is required for
phosphorylation (Vogel et al., 2001). Deletion of this
tyrosine-containing motif results in localization defects of
microtubule plus-end-interacting proteins (þTIPS) (Cuschieri
et al., 2006). In Drosophila g-tubulin is phosphorylated by Wee1
kinase (Stumpff et al., 2005). Interestingly, complexes of
g-tubulin with protein tyrosine kinases of Src family have been
demonstrated in mammalian cells (Dráberová et al., 1999;
Kukharskyy et al., 2004; Sulimenko et al., 2006; Macurek
et al., 2008). Moreover, complexes containing g-tubulin and
polo-like kinase (Feng et al., 1999), MARK 4 (microtubule
affinity-regulating kinase 4) (Trinczek et al., 2004) or regulating
subunit p85a of phosphoinositide 3-kinase (Kapeller et al.,
1995) have been described. In the latter case, direct binding of
g-tubulin to C-terminal SH (Src homology) 2 domain of p85a
was reported (Macurek et al., 2008). g-Tubulin also forms
complexes with phosphorylated LIM kinases during early stages
of mitosis (Chakrabarti et al., 2007). Collectively taken, these
data strongly suggest that kinases might be involved in the
regulation of g-tubulin interactions. Human g-tubulin is also
mono-ubiquitinated at lysines 48 and 344 by the ubiquitin–ligase
complex BRCA1/BARD1 (Starita et al., 2004).

Although g-tubulin is localized on MTOCs, a larger amount
of g-tubulin is in soluble form. g-Tubulin appears in two main
complexes: the large g-tubulin ring complex (gTuRC; around
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2.2 MDa) and the g-tubulin small complex (g-TuSC; around
280 kDa). The human g-TuSC comprises two molecules of
g-tubulin and one molecule each of GCP2 and GCP3 (g-tubulin
complex proteins) (Murphy et al., 1998). The gTuRC derives
from the 5-7 g-TuSC by condensation and association with
proteins GCP4, GCP5, GCP6 (Murphy et al., 2001), and
GCP-WD/NEDD1 (Lüders et al., 2006). Electron microscopic
tomography indicates that associated proteins, not involved in
g-TuSC, form the cap of the ring structure (Moritz et al., 2000).
Hundreds of gTuRC-like rings were found in pericentriolar
material of Drosophila centrosomes. The existence of these
rings correlated with the ability of centrosomes to nucleate
microtubules (Schnackenberg and Palazzo, 2001). There is
evidence thatg-tubulin may associate with the microtubule wall
(Leguy et al., 2000; Linhartová et al., 2002). g-Tubulin has also
been found to bind to membraneous components of the cell
from which can nucleate non-centrosomal microtubules
(Chabin-Brion et al., 2001; Dryková et al., 2003; Rı́os et al.,
2004; Macurek et al., 2008).

c-Tubulin Functions Independent of Microtubule
Nucleation in Non-Transformed Cells

A centrosome-independent role for g-TuRC proteins in the
spindle assembly checkpoint (SAC) has been proposed (Müller
et al., 2006). The observation that depletion of the g-TuRC
components using RNA interference (RNAi) activates SAC
has led some authors to suggest that g-TuRC proteins play
molecular roles in SAC activation (Müller et al., 2006).
However, others have asserted that this conclusion is
premature because depletion of g-TuRC components leads
to pleiotropic spindle defects, which are known to activate
kinetochore-derived checkpoint signaling (Taylor et al., 2007).

g-Tubulin complexes may also be involved in regulating
microtubule dynamics. Recent findings indicate that the
dynamics of microtubule plus ends are altered, depending on
the expression of g-tubulin complex proteins (reviewed in
Raynaud-Messina and Merdes, 2007). Overlapping role of
g-tubulin with C-terminal kinesin-like protein Pkl1 in bipolar
spindle formation has been reported (Paluh et al., 2000;
Rodriguez et al., 2008).

In mammalian cell nuclei g-tubulin is co-localized with Rad51,
a protein that plays an essential role in recombination repair
of DNA double-strand breaks and DNA crosslinking. This
recruitment of Rad51 and g-tubulin in the same nuclear
complex is increased in the presence of DNA damage produced
by genotoxic treatments either during S phase or in
exponentially growing cells but is not affected by microtubule
poisons such as taxol or colcemid, which do not have direct
interactions with DNA (Lesca et al., 2005).

Centrosome Amplification in Cancer

Numerical, structural, and functional abnormalities of
centrosomes are known to lead to mitotic spindle
abnormalities, including multipolar or monopolar spindles
(Brinkley and Goepfert, 1998; Doxsey, 2001). These
abnormalities result in aneuploidy and chromosomal breaks
in daughter cells (Doxsey, 2001). The chromosome
missegregation in malignant tumors could result from defects in
centrosome function (Brinkley and Goepfert, 1998; D’Assoro
et al., 2002; Nigg, 2002; Salisbury et al., 2004; Emdad et al.,
2005). This process is commonly known as ‘‘centrosome
amplification’’ and entails alterations in the expression of a
multitude of centrosome-associated molecules.

The presence of numerous key regulators of cell-cycle
progression at the centrosome raises the conjecture that the
centrosome itself provides an important structural context for
coordinating cell-cycle regulation (Doxsey, 2001; Nigg, 2002).
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Genes involved in different signal transduction pathways have
been implicated in centrosome amplification. These include
genes of the p53 pathway (p53, WAF-1, Gadd45, Mdm2) and
the DNA-repair pathway (ATR, BRCA-1, BRCA-2, XRCC2/3), as
well as genes involved in ubiquitin-related protein degradation
(Tsg101, Skp2, RAD6) and mitosis (Aurora-A) (reviewed in Zhou
et al., 1998; Goepfert et al., 2002; Nigg, 2002; Stenoien et al.,
2003).

Previous studies conducted more than a decade ago
independently in the laboratories of Stephen Doxsey and Jeffrey
Salisbury have established the presence of centrosome
derangements in a variety of common human epithelial cancers
(carcinomas) including those of the breast and the prostate
(Pihan et al., 1998; Lingle et al., 2002). Abnormal centrosomes
were identified in precancerous lesions and specifically in those
lesions that were aneuploid (Pihan et al., 2003). In addition, a
significant increase in the expression of pericentrin in human
carcinomas of the prostate was demonstrated (Pihan et al.,
2001).

Whereas the mechanisms of centrosome amplification are
not fully elucidated, several models have been proposed in this
regard (reviewed in Brinkley and Goepfert, 1998; Nigg, 2002;
Salisbury et al., 2004; Emdad et al., 2005). Pihan et al. (2001) have
provided strong experimental evidence in support of the
idea that primary centrosome dysfunction may be pivotal to
tumorigenesis, having demonstrated that overexpression of the
centrosomal protein pericentrin, in primary prostate epithelial
cell transfectants gives rise to cells with tumor-like phenotypic
features. Centrosome dysfunction reflected by abnormalities
in the expression and sorting of centrosomal proteins may
precede changes of DNA content. Several lines of evidence, to
date, point to aneuploidy as a cause rather than an effect of
anaplastic transformation (Sen, 2000). Even though it is unclear
whether abnormalities in centrosomal proteins constitute the
primary cause of chromosomal instability and aneuploidy, or
whether they represent epiphenomena secondary to cell-cycle
deregulation, centrosomal abnormalities are important
correlates of tumorigenesis and tumor progression (Nigg,
2002; Krämer, 2005). Centrosome abnormalities have been
reported in a wide range of common epithelial cancers (Pihan
et al., 1998, 2001, 2003; Sato et al., 1999; Kuo et al., 2000;
Setoguchi et al., 2001; Salisbury et al., 2004), in mesenchymal
solid tumors (Al-Romaih et al., 2003), and in hematological
malignancies (Krämer et al., 2005).

In addition to their role in chromosomal instability and
aneuploidy, structurally and/or functionally aberrant
centrosomes may potentially contribute to malignant
transformation by altering tumor cell architecture and motility
(Nigg, 2002). Because centrosomes govern and coordinate
all microtubule-related functions, by virtue of controlling the
number, polarity, and distribution of microtubules (Nigg, 2002),
and also considering that centrosomes determine the cell
cleavage planes and symmetry of cytoplasmic division, the impact
of centrosomal abnormalities on tumor architecture can provide
important insights into the cytoskeletal changes in cancer cells
(Pihan et al., 2001; Lingle et al., 2002; Nigg, 2002).

Increased or otherwise altered expression of centrosomal
proteins are among the signature features and potential
sequels of centrosome amplification, including g-tubulin and
pericentrin (Pihan et al., 1998, 2001; Sato et al., 1999; Kuo et al.,
2000; Setoguchi et al., 2001), as well as increased protein
phosphorylation and enhanced and/or impaired microtubule
nucleating capacity (reviewed in D’Assoro et al., 2002; Nigg,
2002; Salisbury et al., 2004).

c-Tubulin in Cancer

Although it is believed that centrosome amplification can lead
to the formation of multipolar mitotic spindles and increase the



Fig. 2. Distribution of g-tubulin on tissue sections from non-
neoplastic glia. A: Adult human brain. B: Newborn piglet brain. Single
or double dot-like juxtanuclear staining (arrows) is consistent with
centrosomal/pericentriolar localization. Avidin–biotin complex
(ABC) peroxidase with hematoxylin counterstain. Scale bar, 10mm.
Reproduced with permission from the Journal of Neuropathology and
Experimental Neurology (Katsetos et al., 2006); Copyright � 2006
American Association of Neuropathologists, Inc.

Fig. 3. Distribution ofg-tubulin on tissue sections from glioblastoma
multiforme. Robust staining is present in a large number of tumor
cells (A–D). Pleomorphic and multinucleated tumor cells exhibit
innumerable, finely punctate and confluent cytoplasmic localizations
merging into a diffuse staining pattern (B–F). ABC peroxidase with
hematoxylin counterstain. Scale bars: (A) 50mm; (B,D) 20mm;
(C,E,F) 10mm. Reproduced with permission from the Journal of
Neuropathology and Experimental Neurology (Katsetos et al., 2006);
Copyright � 2006 American Association of Neuropathologists, Inc.
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risk of generating aneuploid cells (Nigg, 2002), the molecular
mechanisms responsible for this remain largely unknown.
Molecular profiling has revealed changes in the expression of
both TUBG1 and TUBG2 genes in breast cancer cells (Orsetti
et al., 2004), prostate cancer cells (Li et al., 2005) as well as
in thyroid carcinoma (Montero-Conde et al., 2007), gliomas
(Rickman et al., 2001) and in pediatric pilocytic astrocytomas
(Potter et al., 2008). Interestingly, increased g-tubulin
expression occurs in preinvasive lesions and carcinomas of the
breast (Liu et al., 2009; Niu et al., 2009). The latter indicates that
alterations of g-tubulin expression and subcellular sorting may
also play a role in early tumorigenesis prior to the development
of neoplastic invasion, tumor progression, or metastasis.
However, both systematic preclinical studies and experimental
functional work examining the relationship between altered
expression, localization, and mutation of g-tubulins in cells and
the risk of malignant transformation are still lacking.

BRCA1, the breast and ovarian cancer-specific tumor
suppressor, inhibits centrosomal microtubule nucleation via its
ubiquitin ligase activity, and one of the known BRCA1
substrates is g-tubulin. By controlling g-TuRC localization,
BRCA1 inhibits centrosome function, and loss of BRCA1
results in centrosome hyperactivity, supernumerary
centrosomes and, possibly, aneuploidy (Sankaran et al., 2007).

There is strong evidence that perturbations of the g-tubulin
complex may play an important role in irregular cell division and
mitosis. The g-tubulin complex physically interacts with ELAC2
protein, which is encoded by a novel candidate cancer
susceptibility gene located on chromosome 17p.
Overexpression of ELAC2 protein in prostate cancer cells
causes a delay in G2-M progression characterized by
accumulation of cyclin B levels (Korver et al., 2003).

Expression of a high-risk human papillomavirus type 16
(HPV16) E7 oncoprotein is sufficient to induce aberrant
centrosome duplication in primary human cells, that is linked
to the development of aneuploidy. It has been reported that
HPV16 E7 associates with the g-tubulin and that the
recruitment of g-tubulin to the centrosome is altered in HPV16
E7-expressing cells (Nguyen et al., 2007).

We have recently shown that g-tubulin amplification may be
a pivotal mechanism underlying tumorigenesis in gliomas.

Overexpression of c-Tubulin in Astrocytic Gliomas

Tumor progression in diffuse gliomas is an intricate multistep
process characterized by accumulation of genetic defects and
aneuploidy.

In an oligonucleotide microarray analysis of high- versus
low-grade gliomas, Rickman et al. (2001) previously observed
that genes encoding for a number of cytoskeletal and
cytoskeleton-associated proteins including g-tubulin and
bIV-tubulin were highly expressed in GBM.

We have studied the expression and distribution ofg-tubulin
in 56 primary diffuse astrocytic gliomas (grades II–IV) and in four
human GBM cell lines (U87MG, U118MG, U138MG, and T98G)
using panel of anti-peptide antibodies. In primary tumors,
varying degrees of localization were detected in all tumor
grades, but immunoreactivity was significantly increased in
high-grade anaplastic astrocytomas and GBM as compared to
low-grade diffuse astrocytomas (P¼ 0.0001) (Katsetos et al.,
2006). The differential distribution of g-tubulin on tissue
sections from non-neoplastic glia and GBM is shown in Figures 2
and 3, respectively. By immunocytochemical staining two
overlapping patterns of ectopic cellular localization were
identified in both primary tumors and GBM cell lines:
A punctate pattern, in which g-tubulin was partially
co-distributed with pericentrin in the pericentriolar region, and
a diffuse pattern, independent of pericentrin staining, denoting a
soluble pool of g-tubulin. In addition, coalescent punctate
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localizations especially in the U118MG cells were detected.
A typical localization of g-tubulin in glioblastoma cell line T98G
is shown in Figure 1B. These immunofluorescence localizations
do not appear to correspond to intact ‘‘supernumerary
centrosomes’’ but may represent abnormal protein assemblies
either in the form of ‘‘acentriolar bodies,’’ aberrant
accumulations of ectopic pericentriolar material and/or
fragmented centrosomes (see Brinkley and Goepfert, 1998;
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Nigg, 2002). It is noteworthy that a substantial proportion of
cellular g-tubulin has been detected in the detergent and
nocodazole-resistant fraction of GBM cell line extracts
(Katsetos et al., 2006, 2007). Quantitative real-time PCR
studies have revealed significant increase in the expression of
TUBG1 and TUBG2 transcripts in GBM cell lines as compared
to human fetal astrocytes as well as human medulloblastoma
and osteosarcoma cell lines (P. Dráber, E. Dráberová, C.D.
Katsetos, et al., unpublished work). Divergent localizations
of g-tubulin and pericentrin were detected suggesting a
differential distribution of these two centrosome-associated
proteins in GBM cell lines (Katsetos et al., 2006). These findings
suggest that centrosome amplification does not necessarily
need to be accompanied by structurally intact supernumerary
centrosomes, but rather it may be characterized by altered
expression or modifications of centrosomal proteins, including
g-tubulin.

Interestingly, g-tubulin is co-expressed with the class III
b-tubulin isotype in GBM cells where they exhibit distinct
patterns of compartmentalization and subcellular sorting
(Katsetos et al., 2007). In T98G cells,bIII-tubulin was associated
with microtubules whereas g-tubulin exhibited striking
diffuse cytoplasmic staining in addition to its expected
centrosome-associated pericentriolar distribution. Treatment
with different anti-microtubule drugs revealed that bIII-tubulin
was not associated with insoluble g-tubulin aggregates. On the
other hand, immunoprecipitation experiments demonstrated
that both tubulins formed complexes in soluble cytoplasmic
pools. Collectively taken, these findings indicate that aberrant
expression of bIII-tubulin and g-tubulin may be linked to
malignant changes in glioma cells (Katsetos et al., 2007).

Additional evidence of centrosome amplification in
astrocytomas may be deduced from the increased human
polo-like kinase-1 expression in these tumors (Dietzmann et al.,
2001). Increased polo-like kinase expression has also been
reported in three GBM cell lines (U87MG, U118MG, U138MG)
and primary explants from patients with GBM (Dietzmann
et al., 2001). In addition, c-Jun N-terminal kinase (JNK),
a stress-activated protein kinase, which is associated with the
centrosome (MacCorkle-Chosnek et al., 2001), is thought to
play a role in glioma tumorigenesis (Tsuiki et al., 2003).
Moreover, co-localization of g-tubulin with nerve growth
factor has been demonstrated at the centrosomes or the
spindle poles throughout the cell cycle in the human
glioblastoma cell line U251 MG (Zhang et al., 2005).

It is well established that deletion or mutational/functional
inactivation of p53 leads to centrosome amplification (Tarapore
and Fukasawa, 2002). Because TP53 gene mutations are
genotypic hallmarks of ‘‘secondary’’ GBMs, which arise as a
consequence of malignant change in pre-existing diffuse
low-grade astrocytomas (Watanabe et al., 1996), mutational
inactivation of p53 may potentially account—in part—for the
g-tubulin overexpression encountered in these tumors.

In summary, our results indicate that overexpression and
ectopic cellular distribution of g-tubulin in astrocytic gliomas
may be significant in the context of centrosome protein
amplification and may be linked to tumor progression and
anaplastic potential.

Potential Significance of c-Tubulin Abnormalities in
Tumor Cells

Cancer cells, particularly the highly malignant or anaplastic
tumor phenotypes, may exhibit aberrant microtubule
nucleation resulting in modified microtubule properties as
reflected by the altered expression and aberrant
phosphorylation of microtubule proteins, including tubulin
isotypes (Katsetos et al., 2003). Thus, the microtubule
nucleation capacity of aberrant centrosomes may either be
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reduced or enhanced, depending on the identity and
modification of the overexpressed components of the
pericentriolar material (Nigg, 2002). Such altered MTOCs
will affect the synthesis and isotype composition of tubulin,
rendering dynamically unstable microtubules thus contributing
to abnormalities of cell shape, polarity, adhesion, and motility,
including invasion (Katsetos et al., 2006). Khodjakov and Rieder
(1999) have shown that at the onset of mitosis, the centrosome
suddenly gains the ability to bind several times the amount of
g-tubulin than during interphase. Mitotically active tumor
cells could thus require increased amounts of g-tubulin in the
context of spindle formation and cycle progression (Zhou et al.,
2002).

We postulate that there are potentially two distinct, albeit
not mutually exclusive, types of g-tubulin abnormalities in
cancer. One is centered on the presence of supernumerary
centrosomes and ensuing centrosome dysfunction (what is
conventionally referred to as ‘‘centrosome amplification’’)
while the other has to do with abnormally increased and
compartmentalized pools of g-tubulin in malignant tumor cells,
which may also exist in an ectopically aggregated form in the
cytosol. Our observations on GBM cell lines indicate that
increased g-tubulin expression is not associated with
supernumerary centrosomes but with aberrant accumulation
of its cytoplasmic form (Katsetos et al., 2006). In support of this
observation, we have demonstrated overt decoupling of
g-tubulin and pericentrin in GBM cell lines (Katsetos et al.,
2006).

We propose that g-tubulin perturbations in diffuse
astrocytic gliomas (which may precede alterations of genomic
stability) may be linked to tumor progression where it may
potentially serve as a novel marker of anaplastic change. That
being said, it remains to be determined, in a significantly larger
cohort of patients, whether derangements in the expression
and subcellular sorting of g-tubulin may lay the foundation for a
novel approach to molecular stratification and potential
therapeutic strategies in gliomas.
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Moritz M, Braunfeld MB, Guénebaut V, Heuser J, Agard DA. 2000. Structure of the
g-tubulin ring complex: A template for microtubule nucleation. Nat Cell Biol 2:365–
370.

Moudjou M, Bordes N, Paintrand M, Bornens M. 1996. g-Tubulin in mammalian cells: The
centrosomal and the cytosolic forms. J Cell Sci 109:875–887.

Müller H, Fogeron ML, Lehmann V, Lehrach H, Lange BM. 2006. A centrosome-independent
role for g-TuRC proteins in the spindle assembly checkpoint. Science 314:654–657.

Murphy SM, Urbani L, Stearns T. 1998. The mammalian g-tubulin complex contains
homologues of the yeast spindle pole body components spc97p and spc98p. J Cell Biol
141:663–674.

Murphy SM, Preble AM, Patel UK, O’Connell KL, Dias DP, Moritz M, Agard D, Stults JT,
Stearns T. 2001. GCP5 and GCP6: Two new members of the human g-tubulin complex.
Mol Biol Cell 12:3340–3352.
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